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Abstract

We determine the structure over Z of a ring of symmetric Hermitian mod-
ular forms of degree 2 with integral Fourier coefficients whose weights are
multiples of 4 when the base field is the Gaussian number field Q(

√
−1).

Namely, we give a set of generators consisting of 24 modular forms. As an
application of our structure theorem, we give the Sturm bounds for such Her-
mitian modular forms of weight k with 4 | k, for p = 2, 3. We remark that
the bounds for p ≥ 5 are already known.

1 Introduction

Let e4 and e6 be the normalized Eisenstein series of respective weights 4 and 6 for
Γ1 := SL2(Z), and δ the Ramanujan delta function defined by δ = 2−6 · 3−3(e34− e26).
For the Z-module Mk(Γ1;Z) consisting of modular forms of weight k for Γ1 whose
Fourier coefficients are in Z, we define a ring over Z as

A(Γ1;Z) :=
⊕
k∈Z

Mk(Γ1;Z).

It is a well-known classical result that all the Fourier coefficients of the modular
forms e4, e6 and δ are integers, and they generate A(Γ1;Z). Namely we have

A(Γ1;Z) = Z[e4, e6, δ].

In the case of Siegel modular forms for the symplectic group Γ2 := Sp2(Z) of
degree 2, there is a famous result of Igusa [4]. He showed such the ring over Z is
generated by 15 modular forms. He also showed that its set of generators is minimal.

In this paper, we consider the ring of symmetric Hermitian modular forms of
degree 2 with respect to Q(

√
−1) whose Fourier coefficients are in Z. Since it seems
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to be difficult to give generators of the full space of them, we restrict ourselves to
the case where the weights are multiples of 4. We remark that, the ring of Siegel
modular forms whose weights are multiples of 4 is generated over Z by 23 modular
forms. This is an easy conclusion of Igusa’s result.

In our case, there exists a set of generators consisting of 24 modular forms whose
weights are

4, 8, 12, 12, 12, 16, 16, 20, 24, 24, 28, 28, 32,

36, 36, 36, 40, 40, 48, 48, 52, 60, 60, 72, 84.

The precise statement can be found in Theorem 3.7. In Subsection 3.1, we construct
explicitly these generators.

As an application of this result, we can obtain the Sturm bounds for p = 2, 3
in the case of Hermitian modular forms whose weights are multiples of 4 (Theorem
3.9). We remark that the Sturm bounds for p ≥ 5 are already known in [6].

2 Preliminaries

2.1 Hermitian modular forms of degree 2

We deal with the Hermitian modular forms of degree 2 only for K := Q(
√
−1). Let

O be the ring of Gaussian integers, that is, O = Z[
√
−1].

Let H2 be the Hermitian upper half-space of degree 2 defined as

H2 := {Z ∈ M2(C) | 1
2i
(Z − tZ) > 0},

where tZ is the transposed complex conjugate of Z.
The Hermitian modular group of degree 2

U2(O) :=
{
M ∈ M4(O) | tMJ2M = J2

} (
J2 :=

(
02 −12
12 02

))
acts on H2 by the fractional transformation

M⟨Z⟩ := (AZ +B)(CZ +D)−1, Z ∈ H2, M =

(
A B
C D

)
∈ U2(O).

We denote by Mk(U2(O)) = MSym
k (U2(O), detk/2) the space of the symmetric Her-

mitian modular forms of weight k and character detk/2 with respect to U2(O). (We
deal with modular forms with character detk/2, but we omit the notation). Namely,
the space Mk(U2(O)) consists of holomorphic functions F : H2 −→ C that satisfy

F |k M(Z) := det(CZ +D)−kF (M⟨Z⟩) = det(M)
k
2 · F (Z),
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for all M =

(
A B
C D

)
∈ U2(O) and F (tZ) = F (Z). Note that detk/2 is the trivial

character if 4 | k, and Mk(U2(O)) = {0} if k is odd.
The cusp forms are characterized by the condition

Φ

(
F |k

(
tU 0
0 U

))
≡ 0 for all U ∈ GL2(K),

where Φ is the Siegel Φ-operator. We denote by Sk(U2(O)) the subspace consisting
of all cusp forms in Mk(U2(O)).

2.2 Fourier expansion

Since any F ∈ Mk(U2(O)) satisfies the condition

F (Z +B) = F (Z) for all B ∈ Her2(O),

it has a Fourier expansion of the form

F (Z) =
∑

0≤H∈Λ2(K)

aF (H)e2πitr(HZ),

where
Λ2(K) := {H = (hij) ∈ Her2(K) | hii ∈ Z, 2hij ∈ O}.

For simplicity, we write H = (m, r, s, n) for H =

(
m r+si

2
r−si
2

n

)
∈ Λ2(K), and

aF (m, r, s, n) for aF

(
m r+si

2
r−si
2

n

)
.

For a subring R of C, we define

Mk(U2(O);R)

:=

F =
∑

H∈Λ2(K)

aF (H)e2πitr(HZ) ∈ Mk(U2(O))
∣∣∣ aF (H) ∈ R (∀H ∈ Λ2(K))

 .

We write

q̇11 := exp(2πiz11), q̇22 := exp(2πiz22),

q̇12 := exp

(
2πi

z12 − z21
−2i

)
, q̈12 := exp

(
2πi

z12 + z21
2

)
.

Then for H = (m, r, s, n) ∈ Λ2(K) we have

e2πitr(HZ) = q̇m11q̇
r
12q̈

s
12q̇

n
22.

3



Any F ∈ Mk(U2(O);R) can be regarded as an element of

R[[q̇]] := R[q̇±1
12 , q̈

±
12][[q̇11, q̇22]].

This notation is useful for calculating the Fourier expansion of Hermitian modular
forms.

We consider the Hermitian Eisenstein series of degree 2 defined as

Ek(Z) :=
∑

M=( ∗ ∗
C D )

(detM)−
k
2det(CZ +D)−k, Z ∈ H2,

where k > 4 is even and M =

(
∗ ∗
C D

)
runs over a set of representatives of{(

∗ ∗
02 ∗

)}
\U2(O). Then we have

Ek ∈ Mk(U2(O)).

Moreover E4 ∈ M4(U2(O)) is constructed by the Maass lift ([8]). The Fourier
coefficient of Ek is given by the following formula:

Theorem 2.1 (Krieg [8] (cf. Dern [2])). The Fourier coefficient aEk
(H) of Ek is

given as follows.

aEk
(H)

=



1 if H = 02,

− 2k

Bk

σk−1(ε(H)) if rank(H) = 1,

4k(k − 1)

Bk ·Bk−1,χ−4

∑
0<d|ε(H)

dk−1GK(k − 2, 4 det(H)/d2) if rank(H) = 2,

where Bm is the m-th Bernoulli number, Bm,χ−4 is the m-th generalized Bernoulli
number associated with the Kronecker character χ−4 =

(−4
∗

)
, ε(H) := max{l ∈

N | l−1H ∈ Λ2(K) }, and

GK(m,N) :=
1

1 + |χ−4(N)|
(σm,χ−4(N)− σ∗

m,χ−4
(N)),

σm,χ−4(N) :=
∑
0<d|N

χ−4(d)d
m, σ∗

m,χ−4
(N) :=

∑
0<d|N

χ−4(N/d)dm.

We can construct cusp forms by using the Hermitian Eisenstein series (cf. [3],
Corollary 2);

E10 − E4E6 ∈ S10(U2(O)),

E12 −
441

691
E3

4 −
250

691
E2

6 ∈ S12(U2(O)).
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2.3 Siegel modular forms of degree 2

Let Mk(Γ2) denote the space of the Siegel modular forms of weight k (∈ Z) for the
Siegel modular group Γ2 := Sp2(Z) and Sk(Γ2) the subspace of the cusp forms.

Any F ∈ Mk(Γ2) has a Fourier expansion of the form

F (Z) =
∑

0≤T∈Λ2

aF (T )e
2πitr(TZ),

where Z ∈ S2, S2 is the Siegel upper half-space of degree 2 and

Λ2 = Sym∗
2(Z) := {T = (tij) ∈ Sym2(Q) | tii, 2tij ∈ Z }

(the lattice in Sym2(R) of half-integral, symmetric matrices). For simplicity, we

write T = (m, r, n) for T =

(
m r

2
r
2

n

)
∈ Λ2, and aF (m, r, n) for aF

(
m r

2
r
2

n

)
.

Taking qij := exp(2πizij) with Z = (zij) ∈ H2, we have for T = (m, r, n)

e2πitr(TZ) = qm11q
r
12q

n
22.

For any subring R ⊂ C, we adopt the notation

Mk(Γ2;R) :=

{
F =

∑
T∈Λ2

aF (T )e
2πitr(TZ) ∈ Mk(Γ2)

∣∣∣ aF (T ) ∈ R (∀T ∈ Λ2)

}
,

Sk(Γ2;R) := Mk(Γ2;R) ∩ Sk(Γ2).

Any F ∈ Mk(Γ2;R) can be regarded as an element of

R[[q]] := R[q−1
12 , q12][[q11, q22]].

The space H2 contains the Siegel upper half-space of degree 2

S2 = H2 ∩ Sym2(C).

Hence we can define the restriction map

R[[q̇]] −→ R[[q]]

via the correspondence F 7→ F |S2 := F (zij)|z21=z12 (this means q̇11 7→ q11, q̇22 7→ q22,
q̇12 7→ 1, q̈12 7→ q12). In particular, if F ∈ Mk(U2(O);R) ⊂ R[[q̇]], we have F |S2 ∈
Mk(Γ2;R) ⊂ R[[q]]. This fact follows from each modularity condition. The relation
among the Fourier coefficients of F and F |S2 is given by

aF |S2 (m, r, n) =
∑
s∈Z

4mn−(r2+s2)≥0

aF (m, r, s, n). (2.1)
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2.4 Igusa’s generators over Z
Let k be an even integer with k ≥ 4. The Siegel Eisenstein series

Gk(Z) :=
∑

M=( ∗ ∗
C D )

det(CZ +D)−k, Z ∈ S2

defines an element of Mk(Γ2;Q). Here, M =

(
∗ ∗
C D

)
runs over a set of represen-

tatives

{(
∗ ∗
02 ∗

)}
\Γ2. We write X4 := G4 and X6 := G6. We set

X10 : = − 43867

210 · 35 · 52 · 7 · 53
(G10 −G4G6) ,

X12 : = − 131 · 593 · 691
211 · 36 · 53 · 72 · 337

(
G12 −

441

691
G3

4 −
250

691
G2

6

)
.

Then we have Xk ∈ Sk(Γ2;Z) (k = 10, 12) and aX10(1, 1, 1) = aX12(1, 1, 1) = 1.
Furthermore, we define

Y12 := 2−6 · 3−3(X3
4 −X2

6 ) + 24 · 32X12,

X16 := 2−2 · 3−1(X4X12 −X6X10),

X18 := 2−2 · 3−1(X6X12 −X2
4X10),

X24 := 2−3 · 3−1(X2
12 −X4X

2
10),

X28 := 2−1 · 3−1(X4X24 −X10X18),

X30 := 2−1 · 3−1(X6X24 −X4X10X16),

X36 := 2−1 · 3−2(X12X24 −X2
10X16),

X40 := 2−2(X4X36 −X10X30),

X42 := 2−2 · 3−1(X12X30 −X4X10X28),

X48 := 2−2(X12X36 −X2
24).

The graded ring A(m)(Γ2;R) over R is defined by

A(m)(Γ2;Z) :=
⊕
k∈mZ

Mk(Γ2;Z).

Theorem 2.2 (Igusa [4]). We have Xk ∈ Mk(Γ2;Z) (k = 4, 6, · · · , 48) and Y12 ∈
M12(Γ2;Z), which generate the graded ring A(2)(Γ2;Z) over Z. Moreover, the set of
14 generators is minimal.

Remark 2.3. Actually, Igusa determined the structure of the full space A(1)(Γ2;Z)
by using the cusp form of weight 35. However, we do not mention a detailed discus-
sion of this remark because it is not used in this paper.

6



From Igusa’s result, we immediately obtain the following property.

Corollary 2.4. The ring A(4)(Γ2;Z) is generated over Z by the following 23 gener-
ators:

S4 := X4, S12 := X12, T12 := Y12, U12 := X2
6 , S16 := X6X10,

T16 := X16, S20 := X2
10, S24 := X24, T24 := X6X18,

S28 := X28, T28 := X10X18, S36 := X36, T36 := X2
18,

U36 := X6X30, S40 := X40, T40 := X10X30, S48 := X48,

T48 := X18X30, S52 := X10X42, S60 := X2
30, T60 := X18X42,

S72 := X30X42, S84 := X2
42.

Let p be a prime and Z(p) the localization of Z at the prime ideal (p) = pZ,
namely, Z(p) = Q ∩ Zp.

The Sturm bounds of the Siegel modular forms of degree 2 for any primes were
initially given by Poor-Yuen [10]. Subsequently, other types bounds for primes p with
p ≥ 5 and for p = 2, 3 were given by Choi-Choie-Kikuta [1] and Kikuta-Takemori
[7], respectively.

Theorem 2.5 (Choi-Choie-Kikuta [1], Kikuta-Takemori [7] (cf. Poor-Yuen [10])).
Let k be a positive integer and p any prime. Let F ∈ Mk(Γ2;Z(p)). Suppose that
aF (m, r, n) ≡ 0 mod p for any m, r, n ∈ Z with

0 ≤ m, n ≤
[
k

10

]
and 4mn− r2 ≥ 0. Then, we have F ≡ 0 mod p.

2.5 Hermitian modular forms over Z[1/2, 1/3]
We set H4 := E4 and

H8 := − 61

210 · 32 · 52
(E8 −H2

4 ),

F10 := − 277

29 · 33 · 52 · 7
(E10 −H4E6),

H12 := − 19 · 691 · 2659
211 · 37 · 53 · 72 · 73

×
(
E12 −

32 · 72

691
H3

4 −
2 · 53

691
E2

6 +
29 · 34 · 52 · 72 · 6791

19 · 691 · 2659
H4H8

)
.

The graded ring A(m)(U2(O);R) over R is defined by

A(m)(U2(O);R) =
⊕
k∈mZ

Mk(U2(O);R).
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Theorem 2.6 (Dern-Krieg [3], Kikuta-Nagaoka [5]). All of H4, E6, H8, F10, and
H12 have Fourier coefficients in Z, and they generate the graded ring

A(2)(U2(O);Z[1/2, 1/3]).

Moreover, these 5 generators are algebraically independent over C and we have

H4|S2 = X4, E6|S2 = X6, H8|S2 = 0, F10|S2 = 6X10, H12|S2 = X12.

Remark 2.7. The ring A(2)(U2(O);R) coincides with the ring A(1)(U2(O);R) of the
full space of the symmetric Hermitian modular forms, because of Mk(U2(O)) = {0}
for odd k.

Let p be a prime. Let ordp be the additive valuation on Q normalized so that
ordp(p) = 1. For a formal Fourier series of the form F =

∑
H aF (H)e2πitr(HZ) ∈ Q[[q̇]],

we define vp(F ) ∈ Z as

vp(F ) := inf
H∈Λ2(K)

ordp(aF (H)).

Then, we have the following properties.

Lemma 2.8. (1) For any Fi =
∑

aFi
(H)e2πitr(HZ) (i = 1, 2) with vp(Fi) > −∞, we

have
vp(F1F2) = vp(F1) + vp(F2).

(2) We have vp(H8) = 0 for any prime p.

Proof. (1) We can easily prove this property, if we define an order for two elements
of Λ2(K) in the same way as in [6].

(2) The statement follows from the fact thatH8 ∈ M8(U2(O);Z) and aH8(1, 1, 1, 1) =
1.

Lemma 2.9. Let p be any prime and F =
∑

m,n≥0 am,n(F ; q̇12, q̈12)q̇
m
11q̇

n
22 ∈ Z(p)[[q̇]].

Let N be a positive integer. Suppose there exists F ′ ∈ Z(p)[[q̇]] such that F ≡ H8F
′

mod p and am,n(F ; q̇12, q̈12) ≡ 0 mod p for all m, n with 0 ≤ m, n ≤ N . Then we
have am,n(F

′; q̇12, q̈12) ≡ 0 mod p for all m, n with 0 ≤ m, n ≤ N − 1.

Proof. This statement can be proved in a way similar to the proof of Lemma 4.4
in Nagaoka-Takemori [9] (see also Kikuta-Takemori [7] Lemma 5.1). In fact, the
Fourier expansion of H8 is given by

H8 = q̇11q̇22(4− 2q̇−1
12 − 2q̇12 − 2q̈−1

12

+ q̇−1
12 q̈

−1
12 + q̇12q̈

−1
12 − 2q̈12 + q̇−1

12 q̈12 + q̇12q̈12) + · · · . (2.2)

This completes the proof of Lemma 2.9.

We use the Sturm bounds in subsequent sections.
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Theorem 2.10 (cf. Kikuta-Nagaoka [6]). Let p be a prime with p ≥ 5 and F ∈
Mk(U2(O);Z(p)). Suppose that aF (m, r, s, n) ≡ 0 mod p for all m, r, s, n ∈ Z with

0 ≤ m, n ≤
[
k

8

]
and 4mn− (r2 + s2) ≥ 0. Then we have F ≡ 0 mod p.

Remark 2.11. The statement of Theorem 2 in [6] is slightly different from this
statement. Therefore we modify the proof as follows.

The assumption of Theorem 2.10 and the Sturm bound in Theorem 2.5 imply
that F |S2 ≡ 0 mod p. Theorem 2.6 yields the existence of F ′ ∈ Mk−8(U2(O);Z(p))
such that F ≡ H8F

′ mod p. By Lemma 2.9, such F ′ satisfies the same assumption
of Theorem 2.10 for the weight k − 8. Hence we can proceed with the inductive
argument on the weight k.

In general, the Sturm bounds imply the ordinary vanishing conditions.

Corollary 2.12. Let F ∈ Mk(U2(O);Q). Suppose that aF (m, r, s, n) = 0 for all m,
r, s, n ∈ Z with

0 ≤ m, n ≤
[
k

8

]
and 4mn− (r2 + s2) ≥ 0. Then we have F = 0.

Proof. Wemay apply Theorem 2.10 to F for infinitely many primes p with p ≥ 5.

3 Structure over Z

3.1 Construction of generators

We set

I12 := 2−6 · 3−3(H3
4 − E2

6) + 24 · 32H12,

J12 := E2
6 ,

H16 := 2−1 · 3−1(E6F10 −H2
4H8),

I16 := 2−2 · 3−1(H4H12 −H16),

H20 := 2−2 · 3−2(F 2
10 −H4H

2
8 − 22 · 3H8H12),

H24 := 2−3 · 3−1(H2
12 −H4H20)− 2−1 · 3−1H8I16.

To construct additional generators, we temporarily use the letter K.

K14 := 2−1 · 3−1(H4F10 − E6H8),

K18 := 2−2 · 3−1(E6H12 −H4K14),

K22 := 2−1 · 3−1(F10H12 −H8K14),

K30 := 2−1 · 3−1(E6H24 −K14I16) + 3−1H8F10I12.
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From these definitions and Theorem 2.6, it is easy to see that

K14|S2 = X4X10, K18|S2 = X18, K22|S2 = X10X12, K30|S2 = X30.

Finally we put

I24 := E6K18, I28 := 2−1 · 3−1(F10K18 −H4H8I16),

H28 := 2−1 · 3−1(H4H24 − I28)− 3−1H2
8I12,

H36 := 2−1 · 3−2(H12H24 − I16H20) + 7 · 3−2H8H28 + 3−1H3
8H12,

I36 := K2
18, J36 := E6K30,

H40 := 2−2(H4H36 − 2−1 · 3−1F10K30)− 5 · 2−3 · 3−1H4H8H28

+ 2−2H3
8H16 + 2−1H8I12H20,

I40 := 2−1 · 3−1(F10K30 −H4H8H28),

H48 := 2−2(H12H36 −H2
24)− 2−3H8(H12H28 + 2H40

+ 4H8H
2
10H12 − 2H4H

2
8H20 − 2H4H

3
8H12 + 4H8I12H20

+ 2H2
8H12I12 − I16H24 − 2H3

8I16 + 2I40),

I48 := K18K30,

H52 := 2−1 · 3−1(F10K42 − 2H8F
2
10H

2
12 − 22H8H12I12H20

− 5H8F10I12K22 −H8I16H28 −H3
8I12I16),

H60 := K2
30, I60 := K18K42, H72 := K30K42, H84 := K2

42,

where we put

K42 := 2−2 · 3−1(H12K30 −K14H28)− 2−1H8I12K22.

Note that we have K42|S2 = X42.
By the above definitions and from Theorem 2.6, we can easily confirm the fol-

lowing property.

Proposition 3.1. We have

Hk1 |S2 = Sk1 , Ik2 |S2 = Tk2 and Jk3 |S2 = Uk3

for each k1, k2, k3 with

k1 ∈ {4, 12, 16, 20, 24, 28, 36, 40, 48, 52, 60, 72, 84},
k2 ∈ {12, 16, 24, 28, 36, 40, 48, 60}, k3 ∈ {12, 36}.

3.2 Integralities of generators

The first our purpose is to prove that all the Fourier coefficients of the modular
forms constructed in the previous subsection are integers. We start by proving
several lemmas.

We write H4 = 1 + 24 · 3S, E6 = 1 + 23 · 32T with S, T ∈ Z[[q̇]].
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Lemma 3.2. We have S ≡ T mod 22 · 3.

Proof. For H ∈ Λ2(K) with rank(H) = 1, we have

aH4(H) = 24 · 3 · 5
∑

0<d|ε(H)

d3,

aE6(H) = −23 · 32 · 7
∑

0<d|ε(H)

d5.

The assertion for rank(H) = 1 follows from 5 ≡ −7 mod 22 · 3 and the application
of the Euler congruence ∑

0<d|ε(H)

d3 ≡
∑

0<d|ε(H)

d5 mod 22 · 3.

Let H ∈ Λ2(K) with rank(H) = 2. Then we have

aH4(H) = −26 · 3 · 5
∑

0<d|ε(H)

d3GK(3, 4 detH/d2),

aE6(H) = −25 · 32 · 5−1 · 7
∑

0<d|ε(H)

d5GK(5, 4 detH/d2).

The Euler congruence implies that∑
0<d|ε(H)

d3GK(3, 4 detH/d2) ≡
∑

0<d|ε(H)

d5GK(5, 4 detH/d2) mod 22 · 3.

On the other hand, we have

22 · 5 ≡ 22 · 5−1 · 7 mod 22 · 3.

Therefore, the assertion holds.

By this lemma, we can put T = S + 22 · 3U with U ∈ Z[[q̇]]. Then we have

H4 = 1 + 24 · 3S,
E6 = 1 + 23 · 32S + 25 · 33U.

This is an important fact for our arguments on the integralities of generators.

On the generator I16 For the proof of the integrality of I16, we use (as in [5])
the correspondence between the Maass space and the Kohnen plus subspace given
by Krieg [8]. We briefly review this correspondence.

We define the congruence subgroup of Γ1 = SL2(Z) with level N (N ∈ N) as

Γ
(1)
0 (N) :=

{(
a b
c d

)
∈ Γ1

∣∣∣ c ≡ 0 mod N

}
.
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Let Mk(Γ
(1)
0 (4), χk

−4) be the space of elliptic modular forms of weight k with char-

acter χk
−4 for Γ

(1)
0 (4). Let Mk(U2(O)) be the Maass space consisting of all of

F ∈ Mk(U2(O)) satisfying the Maass relation. For the precise definition, see [8]
(p. 676).

The Hermitian modular forms version of the Kohnen plus subspace is defined as

M+
k (Γ

(1)
0 (4), χk

−4)

:=

{
f =

∞∑
n=0

af (n)q
n ∈ Mk(Γ

(1)
0 (4), χk

−4)
∣∣∣ af (n) = 0 ∀n ≡ 1 mod 4

}
.

Krieg gave the isomorphism as the vector spaces

M+
k−1(Γ

(1)
0 (4), χk−1

−4 ) −→ Mk(U2(O)).

Taking any

h =
∞∑
n=0

ah(n)q
n ∈ M+

k−1(Γ
(1)
0 (4), χk−1

−4 )

with q = e2πiτ and τ ∈ H1 := {τ = x + iy | y > 0}, we can construct a Her-
mitian modular form Lift(h) ∈ Mk(U2(O)) using the relation among their Fourier
coefficients

aLift(h)(H) =
∑

0<d|ε(H)

dk−1 1

1 + |χ−4(4 detH/d2)|
ah(4 detH/d2).

Lemma 3.3. We have I16 ∈ M16(U2(O);Z).

Proof. Let e3 be the Eisenstein series of weight 3 for Γ
(1)
0 (4) with character χ−4

defined by

e3 =
∞∑
n=0

ae3(n)q
n

:= 1− 4
∞∑
n=1

∑
0<d|n

dk−1
(
χ−4(d)− χ−4

(n
d

)) qn.

We remark that ae3(n) = 0 for all n with n ≡ 1 mod 4. In fact, for n and d with
n ≡ 1 mod 4 and d | n, we have χ−4(d) ̸= 0 and

χ−4(d)
(
χ−4(d)− χ−4

(n
d

))
= 1− χ−4(n) = 0.

This means that χ−4(d)−χ−4(n/d) = 0 for any n and d with n ≡ 1 mod 4 and d | n.
We put

h15 := δ(4τ)e3

= q4 + 12q6 + 64q7 + 36q8 − 128q10 + · · · ,

12



where δ is the usual Ramanujan delta function defined in Introduction. Then we
have h15 ∈ M+

15(Γ
(1)
0 (4), χ−4) because ae3(n) = 0 for all n with n ≡ 1 mod 4.

Therefore we can apply the isomorphism constructed by Krieg. Hence, there
exists Lift(h15) ∈ M16(U2(O)) such that

aLift(h15)(H) =
∑

0<d|ε(H)

d15

1 + |χ−4(4 detH/d2)|
ah15(4 detH/d2).

From the definition of h15, we can see that h15 ≡ δ(4τ) mod 2 because of e3 ≡ 1
mod 2. Hence, we have ah15(n) ≡ 0 mod 2 for all n with n ≡ 1 mod 2. This implies
that

1

1 + |χ−4(4 detH/d2)|
ah15(4 detH/d2) ∈ Z

for each d. Namely Lift(h15) ∈ M16(U2(O);Z) follows.
By direct calculation, we see that

aI16(m, r, s, n) = aLift(h15)(m, r, s, n)− 56aH2
8
(m, r, s, n)

for all (m, r, s, n) ∈ Λ2(K) with m, n ≤ 2 = [16/8]. Applying Corollary 2.12, we
obtain

I16 = Lift(h15)− 56H2
8 .

Since Lift(h15)−56H2
8 ∈ M16(U2(O);Z), we have the assertion I16 ∈ M16(U2(O);Z).

Lemma 3.4. We have 6H12 − F10 +H2
4H8 ≡ 0 mod 23 · 32.

Proof. By the definition of H16, we have

2 · 3H16 = E6F10 −H2
4H8.

Hence, we can write as

23 · 32I16 = 6H4H12 − E6F10 +H2
4H8.

Since I16 ∈ M16(U2(O);Z), we have 6H4H12−E6F10+H2
4H8 ≡ 0 mod 23 · 32. Using

the fact that H4 ≡ 1 mod 24 · 3, E6 ≡ 1 mod 23 · 32, we get

6H12 − F10 +H2
4H8 ≡ 0 mod 23 · 32.

From this lemma, we can write as

6H12 − F10 +H2
4H8 = 23 · 32V

with V ∈ Z[[q̇]]. This description is another important factor for our arguments.
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On the other generators First we remark that the integralities of J12 = E2
6 ,

I24 = E6K18, I36 = K2
18, J36 = E6K30, I48 = K18K30, H60 = K2

30, I60 = K18K42,
H72 = K30K42, and H84 = K2

42 follow from that of E6, K18, K22, K30, and K42.

Lemma 3.5. We have the integralities of all the generators constructed in Subsec-
tion 3.1.

Proof. We prove this for H20. By the definition of H20, we can write as

H20 = 2−2 · 3−2(F 2
10 − 12H12H8 −H4H

2
8 ).

If we use the descriptions

F10 = 6H12 +H2
4H8 − 23 · 32V,

H4 = 1 + 24 · 3S,
E6 = 1 + 23 · 32S + 25 · 33U,

then we have

H20 = H2
12 + 32H12H8S + 4H2

8S + 768H12H8S
2 + 384H2

8S
2

+ 12288H2
8S

3 + 147456H2
8S

4 + 24H12V + 4H8V + 384H8SV

+ 9216H8S
2V + 144V 2.

This shows that H20 ∈ Z[H12, H8, S, U, V ]; therefore, H20 ∈ M20(U2(O);Z).
In the same way, we can confirm that all the generators are elements of Z[H12, H8, S, U, V ].

The integralities of all of the generators follow from this fact.

Now we could prove the integralities of our generators:

Theorem 3.6. All the modular forms

H4, H8, H12, I12, J12, H16, I16, H20, H24, I24, H28, I28,

H36, I36, J36, H40, I40, H48, I48, H52, H60, I60, H72, H84

and also

K14, K18, K22, K30, K42

are elements of Z[[q̇]].

3.3 Structure theorem

We are now in a position to prove the following main result.
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Theorem 3.7. The graded ring A(4)(U2(O);Z) over Z is generated by the following
24 modular forms:

H4, H8, H12, I12, J12, H16, I16, H20, H24, I24, H28, I28,

H36, I36, J36, H40, I40, H48, I48, H52, H60, I60, H72, H84.

In other words, for any F ∈ Mk(U2(O);Z) with 4 | k, there exists a polynomial with
24 variables having coefficients in Z such that F = P (H4, H8, H12, · · · , H84).

Proof. We prove this by the induction on the weight.
For k = 4, the statement is clearly true. Let k0 be a positive integer with 4 | k0.

Suppose that the statement is true for all k with k < k0. Let F ∈ Mk0(U2(O);Z).
Then there exists a polynomial P with 23 variables having coefficients in Z such
that F |S2 = P (S4, S12, T12, · · · , S84) because of Corollary 2.4. Then we have F −
P (H4, H12, I12, · · · , H84) ∈ Mk0(U2(O);Z) and (F−P (H4, H12, I12, · · · , H84))|S2 = 0.
By the result of Dern-Krieg [3], there exists F ′ ∈ Mk0−8(U2(O);Q) such that F −
P (H4, H12, I12, · · · , H84) = H8F

′. Since all Fourier coefficients of P (H4, H12, I12, · · · , H84)
are in Z, we have H8F

′ ∈ Mk(U2(O);Z). By vp(H8) = 0 for any prime p, we have
F ′ ∈ Mk0−8(U2(O);Z) because of Lemma 2.8. By the induction hypothesis, there
exists a polynomial P ′ such that F ′ = P ′(H4, H8, H12, · · · , H84). Therefore we have

F = P (H4, H12, I12, · · · , H84) +H8P
′(H4, H8, H12 · · · , H84).

This completes the proof of Theorem 3.7.

Remark 3.8. To determine the structure of A(2)(U2(O);Z) by our method, we need
K46 ∈ M46(U2(O);Z) such that K46|S2 = X10X36. However, we predict that there
does not exist such K46 because of the leading terms of the Fourier expansions.
This is mainly why we restricted ourselves to the case in which the weights are
multiples of 4. We also remark that we can construct K ′

46 ∈ M46(U2(O);Z) such
that K ′

46|S2 = 3X10X36.

3.4 An Application

As an application, we have the following Sturm bounds for any k with 4 | k.

Theorem 3.9. Let p be any prime and k an integer with 4 | k. Suppose that
F ∈ Mk(U2(O);Z(p)) satisfies aF (m, r, s, n) ≡ 0 mod p for all m, r, s, n ∈ Z with

0 ≤ m, n ≤
[
k

8

]
and 4mn− (r2 + s2) ≥ 0. Then we have F ≡ 0 mod p.

For the proof, we prepare a lemma.
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Lemma 3.10. Let p = 2, 3 and k be an integer with 4 | k. Suppose that F ∈
Mk(U2(O);Z) satisfies F |S2 ≡ 0 mod p. Then there exists F ′ ∈ Mk−8(U2(O);Z)
such that F ≡ H8F

′ mod p.

Proof. Since F |S2 ≡ 0 mod p, we have 1
p
F |S2 ∈ Mk(Γ2;Z). By Corollary 2.4,

there exists an isobaric polynomial P with coefficients in Z such that 1
p
F |S2 =

P (S4, S12, · · · , S84). If we put

G := P (H4, H12, · · · , H84),

then we have G ∈ Mk(U2(O);Z) and (F − pG)|S2 = 0. By the result of Dern-
Krieg [3], there exists F ′ ∈ Mk−8(U2(O);Q) such that F − pG = H8F

′. Since
vp(F − pG) ≥ 0 and vp(H8) = 0 for all primes p with p ≥ 2, it should follow that
F ′ ∈ Mk−8(U2(O);Z). Then we have F ≡ H8F

′ mod p.
This competes the proof of Lemma 3.10.

Proof of Theorem 3.9. The statement for p ≥ 5 is that of Theorem 2.10. Hence we
prove the new case with p = 2, 3.

Taking a constant multiple cF with c ∈ Z×
(p), we may suppose that F ∈ Mk(U2(O);Z).

For k = 4, 8, we have the following as free Z-modules:

M4(U2(O);Z) = H4Z,
M8(U2(O);Z) = H2

4Z⊕H8Z.

Since H4 ≡ 1 mod p and from the explicit form of the Fourier expansion of H8 in
(2.2), the statements for k = 4, 8 are trivial.

Let k ≥ 12. From [k/8] ≥ [k/10] and by (2.1), we have aF |S2 (m, r, n) ≡ 0 mod
p for all m, n ∈ Z with m, n ≤ [k/10]. Hence we can apply the Sturm bound in
Theorem 2.5 to F |S2 . Then we have F |S2 ≡ 0 mod p. By Lemma 3.10, there exists
F ′ ∈ Mk−8(U2(O);Z) such that F ≡ H8F

′ mod p. Then F ′ has the property that
aF ′(m, r, s, n) ≡ 0 mod p for any m, n ∈ Z with

0 ≤ m, n ≤
[
k

8

]
− 1 =

[
k − 8

8

]
because of Lemma 2.9. Note here that 4 | k − 8, and we can apply the above
argument to F ′.

If we apply this argument repeatedly, we have F ≡ 0 mod p. This completes the
proof of Theorem 3.9.
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